Теплопроводности уравнение. Метод фурье для уравнения теплопроводности Методы решения дифференциального уравнения теплопроводности

АНАЛИТИЧЕСКИЕ МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ

В настоящее время аналитическим путем решено очень большое количество одномерных задач теплопроводности.

А.В.Лыков, например, рассматривает четыре метода решения уравнения теплопроводности в условиях одномерной задачи: метод разделения переменных, метод источников, операционный метод, метод конечных интегральных преобразований.

В дальнейшем остановимся только на первом методе, получившем наибольшее распространение.

Метод разделения переменных при решении уравнения теплопроводности

Дифференциальное уравнение теплопроводности в условиях одномерной задачи и без источников теплоты имеет вид

T/?ф = a ? 2 t/?x 2 .(3.1)

Это уравнение является частным случаем однородного дифференциального уравнения с постоянными коэффициентами для некоторой функции t от двух переменных x и ф:

Легко проверить, что частным решением этого уравнения будет выражение

t = C exp (бx + вф).(3.3)

Действительно:

  • ?t/?x = бС ехр (бx + вф);?t/?ф = вС ехр (бx + вф);
  • ? 2 t/?x 2 = б 2 С ехр (бx + вф);
  • ? 2 t/?ф 2 = в 2 С ехр (бx + вф);? 2 t/(?x ?ф) = бвС ехр (бx + вф).(3.4)

Совместное решение последних семи уравнении дает

a 1 б 2 + b 1 бв + c 1 в 2 + d 1 б + l 1 в + f 1 = 0.(3.5)

Последнее уравнение называется уравнением коэффициентов.

Переходя к уравнению (3.1) сопоставляя его с уравнением (3.2), заключаем, что

b 1 = c 1 = d 1 = f 1 = 0;a 1 = - a;l 1 = 1.(3.6)

Уравнение коэффициентов (3.5) для частного случая уравнения (3.1) приобретает вид

Б 2 a + в = 0(3.7)

в = б 2 a.(3.8)

Таким образом, частное решение (3.3) является интегралом дифференциального уравнения (3.1) и с учетом (3.8) приобретет вид

t = C exp (б 2 aф + бx).(3.9)

В этом уравнении можно задавать любые значения чисел для C, б, a.

Выражение (3.9) может быть представлено в виде произведения

t = C exp (б 2 aф) exp (бx),(3.10)

где сомножитель exp (б 2 aф) является функцией только времени ф, а сомножитель exp (бx) -- только расстояния x:

exp (б 2 aф) = f (ф);exp (бx) = ц (x).(3.11)

С увеличением времени ф температура во всех точках непрерывно растет и может стать выше наперед заданной, что в практических задачах не встречается. Поэтому обычно берут только такие значения б, при которых б 2 отрицательно, что возможно при б чисто мнимой величине. Примем

б = ± iq,(3.12)

где q -- произвольное действительное число (ранее значком q обозначали удельный тепловой поток),

В этом случае уравнение (3.10) приобретет следующий вид:

t = C exp (- q 2 aф) exp (± iqx).(3.13)

Обращаясь к известной формуле Эйлера

exp (± ix) = cos x ± i sin x(3.14)

и, пользуясь ею, преобразуем уравнение (3.13). Получим два решения в комплексном виде:

Суммируем левые и правые части уравнений (3.15), затем отделим действительные от мнимых частей в левой и правой частях суммы и приравняем их соответственно. Тогда получим два решения:

Введем обозначения:

(C 1 + C 2)/2 = D;(C 1 - C 2)/2 = C(3.17)

тогда получим два решения, удовлетворяющих дифференциальному уравнению теплопроводности (3.1):

t 1 = D exp (- q 2 aф) cos (qx);t 2 = C exp (- q 2 aф) sin (qx).(3.18)

Известно, что если искомая функция имеет два частных решения, то и сумма этих частных решений будет удовлетворять исходному дифференциальному уравнению (3.1), т. е. решением этого уравнения будет

t = C exp (- q 2 aф) sin (qx) + D exp (- q 2 aф) cos (qx),(3.19)

а общее решение, удовлетворяющее этому уравнению, можно записать в следующем виде:

Любые значения q m , q n , C i , D i в уравнении (3.20) будут удовлетворять уравнению (3.1). Конкретизация в выборе этих значений будет определяться начальными и граничными условиями каждой частной практической задачи, причем значения q m и q n определяются из граничных условий, а C i , и D i , -- из начальных.

Помимо общего решения уравнения теплопроводности (3.20) в котором имеет место произведение двух функций, одна из которых зависит от x, а другая - от ф, существуют еще решения, в которых такое разделение невозможно, например:

Оба решения удовлетворяют уравнению теплопроводности, в чем легко убедиться, продифференцировав их сначала по ф, а затем 2 раза по x и подставив результат в дифференциальное уравнение (3.1).

Частный пример нестационарного температурного поля в стенке

Рассмотрим пример применения полученного выше решения.

Исходные данные.

  • 1. Дана бетонная стенка толщиной 2X = 0,80 м.
  • 2. Температура окружающей стенку среды и = 0°С.
  • 3. В начальный момент времени температура стенки во всех точках F(x)=1°C.
  • 4. Коэффициент теплоотдачи стенки б=12,6Вт/(м 2 ·°С); коэффициент теплопроводности стенки л=0,7Вт/(м·°С); плотность материала стенки с=2000кг/м 3 ; удельная теплоемкость c=1,13·10 3 Дж/(кг·°С); коэффициент температуропроводности a=1,1·10 -3 м 2 /ч; относительный коэффициент теплоотдачи б/л = h=18,0 1/м. Требуется определить распределение температуры в стенке через 5 ч после начального момента времени.

Решение. Обращаясь к общему решению (3.20) и имея в виду, что начальное и последующие распределения температуры симметричны относительно оси стенки, заключаем, что ряд синусов в этом общем решении отпадает, и при x = Х оно будет иметь вид

Значения определены из граничных условий (без дополнительных здесь пояснений) и приведены в табл.3.1.

Располагая значениями из табл.3.1, находим искомый ряд значений по формуле

Таблица 3.1 Значения функций, входящих в формулу (3.24)

  • 0,982
  • 0,189
  • --0,862
  • --0,507
  • 0,713
  • 0,701
  • 10,03
  • --0,572
  • --0,820
  • 13,08
  • 0,488
  • 0,874

т. е. Д1 = 1,250; Д2 = -- 0,373; Д3 = 0,188; Д4 = -- 0,109; Д5 = 0,072.

Начальное распределение температуры в рассматриваемой стенке приобретет следующий вид:

Чтобы получить расчетное распределение температуры через 5 ч после начального момента, необходимо определить ряд значений на время через 5 ч. Эти расчеты выполнены в табл.3.2.

Таблица 3.2 Значения функций, входящих в формулу (3.23)

A=(q ni X) 2 (aф/X 2)

Окончательное выражение для распределения температуры в толще стенки через 5 ч после начального момента

На рис.3.1 показано распределение температуры в толще стенки на начальный момент времени и через 5 ч. Наряду с общим решением здесь же изображены и частные, причем римскими цифрами указаны частные кривые, отвечающие последовательным слагаемым рядов (3.25) и (3.26).


Рис.3.1.

При решении практических задач обычно нет необходимости определять температуру во всех точках стенки. Можно ограничиться расчетом температуры лишь для какой-либо одной точки, например для точки в середине стенки. В этом случае объем вычислительных работ по формуле (3.23) значительно сократится.

Если начальная температура в рассмотренном выше случае равна не 1 °С, а Т с, то уравнение (3.20) примет вид

Решение уравнения теплопроводности при различных граничных условиях

Не будем приводить последовательный ход решения уравнения теплопроводности при других граничных условиях, которые имеют практическое значение в решении некоторых задач. Ниже ограничимся лишь формулировкой их условий с показом имеющихся готовых решений.

Исходные данные. Стенка имеет толщину 2Х. В начальный момент во всех ее точках, кроме поверхности, температура Т с Температура на поверхности 0°С удерживается в течение всего расчетного периода.

Требуется найти t = f(x, ф).

Неподвижное водохранилище покрылось льдом при температуре наибольшей плотности воды (Т с = 4°С). Глубина водохранилища 5м (Х = 5 м). Рассчитать температуру воды в водохранилище через 3 месяца после ледостава. Температуропроводность неподвижной воды a = 4,8·10 -4 м 2 /ч. Тепловой поток у дна, т. е. при x = 0, отсутствует.

В течение расчетного периода (ф=3·30·24=2160ч) температура на поверхности удерживается постоянной и равной нулю, т. е. при x = Х Т п = 0°С. Весь расчет сводим в табл. 3 и 4. Эти таблицы позволяют вычислить значения температуры через 3 месяца после начального момента для глубин у дна, а затем выше через 1 м, т. е. t 0(дно) = 4°С; t 1 = 4°С; t 2 = 3,85°С; t 3 = 3,30°С; t 4 = 2,96°С; t 5(пов) = 0°С.

Таблица 3.3


Таблица 3.4


Как видим, в абсолютно неподвижной воде температурные возмущения весьма медленно проникают вглубь. В природных условиях в водоемах под ледяным покровом всегда наблюдаются течения либо гравитационные (проточные), либо конвективные (разноплотностные), либо, наконец, вызванные поступлением грунтовых вод. Все многообразие указанных природных особенностей следует учитывать при практических расчетах, а рекомендации к этим расчетам можно найти в пособиях и в работах К.И.Россинского .

Тело ограничено с одной стороны (полуплоскость). В момент времени ф = 0 во всех точках температура тела равна Т с. Для всех моментов времени ф > 0 на поверхности тела поддерживается температура Т п = 0°С.

Требуется найти распределение температуры в толще тела и потерю теплоты через свободную поверхность как функцию времени: t = f (x, ф),

Решение. Температура в любой точке тела и в любой момент времени

где есть интеграл Гаусса. Его значения в зависимости от функции даны в табл.3.5.

Таблица 3.5


Практически решение начинается с определения отношения, в котором х и ф заданы в условии задачи.

Количество теплоты, теряемой единицей поверхности тела в окружающую среду, определяется по закону Фурье. За весь расчетный период с начального момента до расчетного

В начальный момент времени температура почвы от поверхности до значительной глубины была постоянной и равной 6°С. В этот момент температура на поверхности почвы упала до 0°С.

Требуется определить температуру почвы на глубине 0,5 м через 48 ч при значении коэффициента температуропроводности почвы a = 0,001 м 2 /ч, а также оценить количество теплоты, теряемое поверхностью за это время.

По формуле (3.29) температура почвы на глубине 0,5 м через 48 ч t=6·0,87=5,2°С.

Общее же количество теплоты, потерянной единицей поверхности почвы, при коэффициенте теплопроводности л = 0,35 Вт/(м·°С), удельной теплоемкости c = 0,83·10 3 Дж/(кг·°С) и плотности с = 1500 кг/м 3 определим по формуле (3.30) Q=l,86·10 6 Дж/м 2 .

интегральный теплопроводность теплота тело

Рис.3.2

Вследствие некоторого внешнего воздействия температура поверхности тела, ограниченного с одной стороны (полуплоскость), претерпевает периодические колебания около нуля. Будем считать, что эти колебания гармонические, т. е. температура поверхности меняется по косинусоиде:

где -- продолжительность колебания (период), T 0 -- температура поверхности,

T 0 макс -- ее максимальное отклонение,.

Требуется определить температурное поле как функцию времени.

Амплитуда колебаний температуры меняется с x по следующему закону (рис.3.2):

Пример к задаче № 3. Изменение температуры на поверхности сухой песчаной почвы в течение года характеризуется косинусоидальным ходом. Средняя годовая температура при этом равна 6°С при максимальных отклонениях от средней летом и зимой, достигающих 24 °С.

Требуется определить температуру грунта на глубине 1 м в момент, когда температура на поверхности равна 30°С (условно 1/VII).

Выражение косинусоиды (3.31) применительно к данному случаю (температуре поверхности) при T 0 макс = 24 0 С примет вид

Т 0 = 24 cos (2рф/8760) + 6.

Ввиду того, что поверхность грунта имеет среднюю годовую температуру 6°С, а не нуль, как в уравнении (3.32), расчетное уравнение примет следующий вид:

Приняв для грунта коэффициент температуропроводности a = 0,001 м 2 /ч и имея в виду, что по условию задачи необходимо определить температуру на конец расчетного периода (через 8760 ч от начального момента), найдем

Расчетное выражение (3.34) приобретет следующий вид: t = 24e -0,6 ·0,825 + 6 = 16,9 °С.

На той же глубине 1м максимальная амплитуда годового колебания температуры, согласно выражению (3.33), составит

T 1 макс = 24e -0,6 = 13,2 °С,

а максимальная температура на глубине 1 м

t 1 макс = T x макс + 6 = 13,2 + 6 =19, 2 °С.

В заключение отметим, что рассмотренные задачи и подходы могут быть использованы при решении вопросов, связанных с выпуском теплой воды в водоем, а также при химическом методе определения расхода воды и в других случаях.

Вывод уравнения теплопроводности

Представим однородное тело и вычленим из него элементарный объем со сторонами, (рисунок 1).

Рисунок 1. Контрольный объем в прямоугольной системе координат

Входящие потоки тепла, расположенные перпендикулярно к поверхностям обозначим как, . Потоки на противоположных поверхностях выразим из рядов Тейлора:

Внутри тела так же могут быть внутренние источники тепла, если и стоки, если:

Изменение внутренней энергии:

Подставим уравнения (1.1.1) в получившееся уравнение (1.1.5):

Подставив их в уравнение (1.1.6), получим уравнение теплопроводности в общем виде для трехмерного пространства:

Введем коэффициент температуропроводности:

и опустим внутренние источники тепла. Получим уравнение теплопроводности в трехмерном пространстве без внутренних источников тепла:

Условия однозначности

Уравнение (1.1) описывает процесс в общем виде. Для ее применения к конкретной задаче необходимы дополнительные условия, называемые условиями однозначности. Данные условия включают в себя геометрические(форма и размеры тела), физические (физические свойства тела), временные(начальное распределение температуры) и граничные условия(описывают процесс теплообмена с окружающей средой).

Граничные условия можно разделить на три основных рода :

1. Граничные условия Дирихле: задано значение функции на границе.

В случае задачи теплопроводности задают значения температуры на поверхности тела.

2. Граничные условия Неймана: задана нормальная производная функции на границе.

Задают плотность теплового потока на поверхности тела.

3. Граничные условия Робена: задана линейная комбинация значения функции и ее производной на границе.

Описывают теплообмен между поверхностью тела и окружающей средой по закону Ньютона-Рихмана.

В данной работе будут использованы только граничные условия Дирихле, в силу сложности реализации остальных граничных условий.

Решение алгебраических уравнений методом Ньютона

Достаточно популярным методом решения уравнений является метод касательных , или метод Ньютона . В этом случае уравнение вида f (x ) = 0 решается следующим образом. Сначала выбирается нулевое приближение (точка x 0). В этой точке строится касательная к графику y = f (x ). Точка пересечения этой касательной с осью абсцисс является следующим приближением для корня (точка x 1). В этой точке снова строится касательная и т.д. Последовательность точек x 0 , x 1 , x 2 … должна привести к истинному значению корня. Условием сходимости является .

Так как уравнение прямой, проходящей через точку x 0 , f (x 0) (а это и есть касательная), записывается в виде

а в качестве следующего приближения x 1 для корня исходного уравнения принимается точка пересечения этой прямой с осью абсцисс, то следует положить в этой точке y = 0:

откуда немедленно следует уравнение для нахождения следующего приближения через предыдущее:

На Рис. 3 показана реализация метода Ньютона средствами Excel. В ячейку B3 вводится начальное приближение (x 0 = -3), а затем остальных ячейках столбца вычисляются все промежуточные величины вплоть до вычисления x 1 . Для выполнения второго шага в ячейку C3 вводится значение из ячейки B10 и процесс вычислений повторяется в столбце C. Затем, выделив ячейки C2:C10 можно, потянув за маркер в правом нижнем углу выделенной области, распространить его на столбцы D:F. В итоге в ячейке F6 получено значение 0, т.е. значение в ячейке F3 есть корень уравнения.

Этот же результат можно получить, используя циклические вычисления. Тогда после заполнения первого столбца и получения первого значения x 1 следует ввести в ячейку H3 формулу =H10. При этом вычислительный процесс будет зациклен и для того, чтобы он выполнялся, в меню Сервис | Параметры на вкладке Вычисления необходимо установить флажок Итерации и указать предельное число шагов итерационного процесса и относительную погрешность (установленное по умолчанию число 0,001 явно недостаточно во многих случаях), по достижении которой вычислительный процесс остановится.

Как известно, такие физические процессы, как перенос тепла, перенос массы в процессе диффузии, подчиняются закону Фика

где l - коэффициент теплопроводности (диффузии), а T – температура (концентрация), а – поток соответствующей величины. Из математики известно, что дивергенция потока равна объемной плотности источника Q этой величины, т.е.

или, для двухмерного случая, когда исследуется распределение температуры в одной плоскости, это уравнение может быть записано в виде:

Решение этого уравнения аналитически возможно только для областей простой формы: прямоугольник, круг, кольцо. В остальных ситуациях точное решение этого уравнения невозможно, т.е. невозможно и определить распределение температуры (или концентрации вещества) в сложных случаях. Тогда приходится использовать приближенные методы решения таких уравнений.

Приближенное решение уравнения (4) в области сложной формы состоит из нескольких этапов: 1) построение сетки; 2) построение разностной схемы; 3) решение системы алгебраических уравнений. Рассмотрим последовательно каждый из этапов и их реализацию с помощью пакета Excel.

Построение сетки. Пусть область имеет форму, показанную на рис. 4. При такой форме точное аналитическое решение уравнения (4), например, методом разделения переменных, невозможно. Поэтому будем искать приближенное решение этого уравнения в отдельных точках. Нанесем на область равномерную сетку, состоящую из квадратов со стороной h . Теперь, вместо того, чтобы искать непрерывное решение уравнения (4), определенное в каждой точке области, будем искать приближенное решение, определенное только в узловых точках сетки, нанесенной на область, т.е. в углах квадратов.

Построение разностной схемы. Для построения разностной схемы рассмотрим произвольный внутренний узел сетки Ц (центральный) (рис.5). С ним соседствуют четыре узла: В (верхний), Н (нижний), Л (левый) и П (правый). Напомним, расстояние между узлами в сетке равно h . Тогда, используя выражение (2) для приближенной записи вторых производных в уравнении (4), можно приближенно записать:

откуда легко получить выражение, связывающее значение температуры в центральной точке с ее значениями в соседних точках:

Выражение (5) позволяет нам, зная значения температуры в соседних точках, вычислить ее значение в центральной точке. Такая схема, в которой производные заменяются конечными разностями, а для поиска значений в точке сетки используются только значения в ближайших соседних точках, называется цетрально-разностной схемой, а сам метод – методом конечных разностей.

Нужно понимать, что уравнение, аналогичное (5), мы получаем ДЛЯ КАЖДОЙ точки сетки, которые, таким образом, оказываются связанными друг с другом. То есть мы имеем систему алгебраических уравнений, в которой число уравнений равно числу узлов сетки. Решать такую систему уравнений можно различными методами.

Решение системы алгебраических уравнений. Метод итераций. Пусть в граничных узлах температура задана и равна 20, а мощность теплового источника равна 100. Размеры нашей области заданы и равны по вертикали 6, а по горизонтали 8, так что сторона квадрата сетки (шаг) h = 1. Тогда выражение (5) для вычисления температуры во внутренних точках принимает вид


Поставим в соответствие каждому УЗЛУ ячейку на листе Excel. В ячейках, соответствующих граничным точкам, введем число 20 (на рис. 6 они выделены серым цветом). В остальных ячейках запишем формулу (6). Например в ячейке F2 она будет выглядеть следующим образом: =(F1 + F3 + E2 + G2)/4 + 100*(1^2)/4. Записав эту формулу в ячейку F2, можно ее скопировать и вставить в остальные ячейки области, соответствующие внутренним узлам. При этом Excel будет сообщать о невозможности проведения вычислений из-за зацикливания результатов:

Нажмите «Отмена» и перейдите в окно Сервис|Параметры|Вычисления , где установите флажок в разделе «Итерации», указав при этом в качестве относительной погрешности величину 0,00001, а в качестве предельного количества итераций 10000:

Такие значения обеспечат нам малую СЧЁТНУЮ погрешность и гарантируют, что итерационный процесс дойдет до заданной погрешности.

Однако эти значения НЕ ОБЕСПЕЧИВАЮТ малую погрешность самого метода, так как последняя зависит от погрешности при замене вторых производных конечными разностями. Очевидно, что эта погрешность тем меньше, чем меньше шаг сетки, т.е. размер квадрата, на котором строится наша разностная схема. Это означает, что точно ВЫЧИСЛЕННОЕ значение температуры в узлах сетки, представленное на рис. 6, на самом деле может оказаться совсем не соответствующим действительности. Существует единственный метод проверить найденное решение: найти его на более мелкой сетке и сравнить с предыдущим. Если эти решения отличаются мало, то можно считать, что найденное распределение температуры соответствует действительности.

Уменьшим шаг вдвое. Вместо 1 он станет равным ½. Число узлов у нас соответственно изменится. По вертикали вместо 7 узлов (было 6 шагов, т.е. 7 узлов) станет 13 (12 квадратов, т.е. 13 узлов), а по горизонтали вместо 9 станет 17. При этом не следует забывать, что величина шага уменьшилась вдвое и теперь в формуле (6) вместо 1 2 нужно в правой части подставлять (1/2) 2 . В качестве контрольной точки, в которой будем сравнивать найденные решения, возьмем точку с максимальной температурой, отмеченную на рис. 6 желтым цветом. Результат вычислений показан на рис. 9:

Видно, что уменьшение шага привело к существенному изменению значения температуры в контрольной точки: на 4%. Для повышения точности найденного решения следует ещё уменьшить шаг сетки. Для h = ¼ получим в контрольной точке 199,9, а для h = 1/8 соответствующее значение равно 200,6. Можно построить график зависимости найденной величины от величины шага:

Из рисунка можно сделать вывод, что дальнейшее уменьшение шага не приведет к существенному изменению температуры в контрольной точке и точность найденного решения можно считать удовлетворительной.

Используя возможности пакета Excel, можно построить поверхность температуры, наглядно представляющую ее распределение в исследуемой области.

с начальными условиями

и граничными условиями

Решение этой задачи будем искать в виде ряда Фурье по системе собственных функций (94)

т.е. в форме разложения

считая при этом t параметром.

Пусть функции f (x , t ) является непрерывной и имеет кусочно-непрерывную производную 1-го порядка по х и при всех t >0 выполняются условия

Предположим теперь, что функции f (x , t ) и
можно разложить в ряд Фурье по синусам

, (117)

(118)

, (119)

. (120)

Подставим (116) в уравнение (113) и с учетом (117), получим

.

Это равенство выполняется тогда, когда

, (121)

или, если
, то это уравнение (121) можно записать в виде

. (122)

Пользуясь начальным условием (114) с учетом (116), (117) и (119) получаем, что

. (123)

Таким образом, для нахождения искомой функции
приходим к задаче Коши (122), (123) для обыкновенного неоднородного дифференциального уравнения первого порядка. Пользуясь формулой Эйлера можно записать общее решение уравнения (122)

,

а с учетом (123) решение задачи Коши

.

Следовательно, когда мы подставим значение этой функции в выражение (116), в итоге получим решение исходной задачи


(124)

где функции f (x , t ) и
определены формулами (118) и (120).

Пример 14. Найти решение неоднородного уравнения параболического типа

при начальном условии

(14.2)

и граничных условиях

. (14.3)

▲ Подберем сначала такую функцию , чтобы удовлетворяла граничным условиям (14.3). Пусть, например,  = xt 2 . Тогда

Следовательно, функция определяемая как

удовлетворяет уравнению

(14.5)

однородным граничным условиям

и нулевым начальным условиям

. (14.7)

Применяя метод Фурье для решения однородного уравнения

при условиях (14.6), (14.7), положим

.

Приходим к следующей задаче Штурма-Лиувилля:

,
.

Решая эту задачу, находим собственные значения

и соответствующие им собственные функции

. (14.8)

Решение задачи (14.5)-(14.7) ищем в виде ряда

, (14.9)

(14.10)

Подставив
из (14.9) в (14.5) получим

. (14.11)

Для нахождения функции T n (t ) разложим функцию (1-х ) в ряд Фурье по системе функций (14.8) на интервале (0,1):

. (14.12)

,

и из (14.11) и (14.12) получаем уравнение

, (14.13)

которое является обыкновенным неоднородным линейным дифференциальным уравнением первого порядка. Его общее решение найдем по формуле Эйлера

а с учетом условия (14.10), найдем решение задачи Коши

. (14.14)

Из (14.4), (14.9) и (14.14) находим решение исходной задачи (14.1)- (14.3)

Задания для самостоятельной работы

Решить начально-краевые задачи

3.4. Задача Коши для уравнения теплопроводности

В первую очередь рассмотрим задачу Коши для однородного уравнения теплопроводности.

удовлетворяющее

Начнем с того, что заменим переменные x и t на
и введем в рассмотрение функцию
. Тогда функции
будут удовлетворять уравнениям

где
- функция Грина, определяемая формулой

, (127)

и обладающая свойствами

; (130)

. (131)

Умножив первое уравнение на G * , а второе на и и затем сложив полученные результаты, получим равенство

. (132)

После интегрирования по частям равенства (132) по в пределах от -∞ до +∞ и пов пределах от 0 доt , получим

Если предполагать, что функция
и ее производнаяограничены при
, то в силу свойств (131) интеграл в правой части (133) равен нулю. Следовательно, можно записать

Заменив в этом равенстве на
, а
на
, получим соотношение

.

Отсюда, используя формулу (127) окончательно получим

. (135)

Формула (135) называется формулой Пуассона и определяет решение задачи Коши (125), (126) для однородного уравнения теплопроводности с неоднородным начальным условием.

Решение же задачи Коши для неоднородного уравнения теплопроводности

удовлетворяющее неоднородному начальному условию

представляет собой сумму решений:

где является решением задачи Коши для однородного уравнения теплопроводности. , удовлетворяющее неоднородному начальному условию, аявляется решением, удовлетворяющее однородному начальному условию. Таким образом, решение задачи Коши (136), (137) определяется формулой

Пример 15. Найти решение уравнения

(15.1)

для следующего распределения температуры стержня:

▲ Стержень является бесконечным, поэтому решение можно записать, используя формулу (135)

.

Так как
в интервале
равна постоянной температуре, а вне этого интервала температура равна нулю, то решение принимает вид

. (15.3)

Полагая в (15.3)
, получим

.

Поскольку

представляет собой интеграл вероятностей, то окончательное решение исходной задачи (13.1), (13.2) можно выразить формулой

.▲