Гипотеза сплошности среды. Основные понятия жидкого кон-тинуума. Гипотеза сплошности газовой среды Понятие об аэродинамических трубах и гидролотках

ЛЕКЦИЯ №2

В основе гипотезы сплошности лежит предположение о том, что в жидкостях и газах все пространство непрерывно занято веществом.

Для газов, у которых длина свободного пробега молекул существенно зависит от температуры и давления, условия сплошности выражаются в том, что линейные характерные размеры области течений велики по сравнению с длиной свободного пробега молекул.

Следовательно, сплошность определяется не абсолютным состоянием жидкости и газа, а отношением параметров среды (длина свободного пробега для газов и амплитуда колебания молекул для жидкости) к линейным размерам, характеризующим потоки.

Таким образом, под сплошной средой понимают непрерывное, безграничное или ограниченное множество (континуум) материальных точек с непрерывным распределением по их множеству вещественных, кинематических, динамических и других физических характеристик, обусловленных разнообразными как «внешними», так и «внутренними» движениями материи, включая сюда и взаимодействие среды с внешними и внутренними полями.

Модель сплошной среды отличается от дискретной системы материальных точек тем, что вместо физических величин, сосредоточенных в отдельных ее точках, приходится иметь дело с непрерывными распределениями этих величин в пространстве - скалярными, векторными и тензорными полями.

Так, распределение массы в сплошной среде определяется заданием в каждой ее точке плотности среды, объемное силовое действие - плотностью распределения объемных сил, а действие поверхностных сил - напряжениями, определяемыми отношением главного вектора поверхностных сил, приложенных к ориентированной в пространстве бесконечно малой площадке, к величине этой площадки. Характеристикой внутреннего напряженного состояния среды в данной точке служит тензор напряжений, знание которого позволяет определять напряжения, приложенные к любой произвольно ориентированной площадке. Перенос тепла или вещества задается соответствующими им векторами потоков.

В кинематике сплошных сред, наряду с принятыми в кинематике дискретной системы точек понятиями перемещений, скоростей и ускорений, появляется характерное для сплошной среды представление о бесконечно малой деформации среды, определяемой тензором деформаций. Если рассматривается непрерывное движение текучей среды, то основное значение приобретает тензор скоростей деформаций, равный отношению тензора бесконечно малых деформаций к бесконечно малому промежутку времени, в течение которого деформация осуществилась.

При рассмотрении частных классов задач обычно приходится приписывать модели сплошной среды дополнительные макроскопические характеристики, определяющие ее индивидуальные материальные свойства, обусловленные действительными микроскопическими свойствами: молекулярной структурой и «скрытыми», движениями материи. В механике сплошных сред эти характеристики вводятся феноменологически, в форме заданных наперед констант или количественных закономерностей. Среди таких характеристик выделим, прежде всего, отражающие вещественные свойства среды при ее равновесном состоянии: молекулярный вес и плотность распределения массы, концентрацию примесей в многокомпонентных и многофазных смесях жидкостей, газов и твердых частиц, затем температуру и теплоемкость среды, электропроводность, магнитную проницаемость и другие физические свойства.



Модель сплошной среды представляет собой результат статистического осреднения скрытой молекулярной структуры среды и совершаемых внутри нее тепловых и других форм движений материи и взаимодействий между молекулами вещества.

Жидкая среда заполняет тот или иной объем без каких-либо промежутков, сплошным образом. Жидкая среда, благодаря изменению расстояния между частицами, меняет внешнюю конфигурацию, т.е. деформируется. Для твердого тела подвижность частиц мала, а для жидких сред – велика. Поэтому, мерой подвижности частиц для жидких сред служат уже не сами смещения, а скорость смещения частиц, т.е. скорости деформаций. Следовательно, для сплошной жидкой среды мерами подвижности частиц служат их скорости и их скорости деформации. Замкнутая поверхность, состоящая из одних и тех же частиц, будет непрерывно деформироваться. Если нет разрыва сплошной среды, то реализуется непрерывность распределения в объеме скоростей и плотностей частиц.

Под частицей сплошной среды подразумевает не любую как угодно малую часть ее объема, а весьма небольшую его часть, содержащую все же внутри себя миллиарды молекул. В общем случае минимальная цена деления макроскопического масштаба пространственной  или временной t координаты должна быть достаточно малой, чтобы пренебречь изменением макроскопических физических величин в пределах  или t, и достаточно большой, чтобы пренебречь флуктуациями макроскопических величин, полученных осреднением микроскопических величин по времени t или элементу пространства  3 . Выбор минимальной цены деления макроскопического масштаба определяется характером решаемой задачи. Для промышленного аппарата можно с достаточной степенью точности принимать в качестве минимальной цены деления пространственных координат 1мм и временных координат 1с.

Движение макроскопических объемов среды приводит к переносу массы, импульса и энергии.

    1. Режимы движения жидких сред

При течение жидкой среды (жидкости) реализуется 2 режима:

Ламинарный,

Турбулентный.

При ламинарным режиме жидкость течет малой скоростью, отдельными струйками, не смешиваясь, параллельно стенкам канала. При этом траектории отдельных частиц не пересекаются, все частицы имеют лишь продольную составляющую скорости.

С увеличением скорости движения потока жидкости картина качественно меняется. Траектории частиц представляют сложные, хаотичные кривые, пересекающие между собой. Во всех точках потока скорость и давление нерегулярно изменяются с течением времени, пульсируют вокруг некоторых своих средних значений, возникают поперечные составляющие скорости. Этот режим движения жидкости называется турбулентным. Режим может меняться с изменением диаметра канала и вязкости жидкости. В турбулентном потоке можно говорить не об актуальных, но только об осредненных за достаточно протяженный отрезок времени величинах скорости и давления.

Между ламинарными и турбулентными режимами движения жидкости находится область развития турбулентности. В этой область турбулентность имеет переменную интенсивность, увеличивающуюся с ростом скорости.

При турбулентном режиме малые возмущения, возникающие в реальных условиях, не затухают, происходит развитие нерегулярного хаотичного движения отдельных объемов среды (вихрей). Вихри не являются устойчивыми, четко ограниченными в пространстве образованиями. Они зарождаются, распадаются на более мелкие вихри, затухают с переходом механической энергии в тепловую.

При выполнении расчетов гидравлических сопротивлений, тепловых и массообменных процессов, происходящих в аппаратах и машинах, необходимо знать режимы течения жидкостей, поскольку для ламинарного режима характерны одни закономерности, а для турбулентного – другие.

Количественно режим течения определяется по критерию Рейнольдса.

Свойства реальных жидкостей и газов и особенности их реального движения находят в исходных положениях гидродинамики лишь своё приближённое отражение. Но по мере развития как самой гидродинамики, так и смежных с ней наук эти исходные положения расширяются, благодаря чему степень соответствия их содержания содержанию реальных свойств изучаемого явления повышается. Кроме того, с развитием гидродинамики и смежных с ней наук, с развитием техники экспериментирования постепенно выявляются границы применимости ранее принятых исходных положений и устанавливаются возможные их уточнения.

В период формирования науки гидродинамики её основателями - Эйлером, Даламбером и Лагранжем было принято то основное допущение, согласно которому жидкость или газ заполняют тот или иной объём без каких-либо свободных промежутков, т. е. жидкость или газ представляют собой сплошные среды. Результаты вычислений, полученные при использовании этого основного допущения, в большом

числе случаев хорошо согласуются с результатами соответствующих наблюдений и измерений. Это обстоятельство служит основанием к тому, чтобы и в настоящее время в качестве основного допущения принимать гипотезу о сплошности жидкости и газа.

При гипотезе сплошного заполнения жидкостью или газом конечного объёма за частицу можно принимать любой как угодно малый объём. К такой частице применимы основные кинематические понятия скорости и ускорения точки. Отличие жидкости или газа от абсолютно твёрдого тела будет заключаться в том, что расстояния между частицами жидкости или газа меняются. Благодаря изменениям расстояний между частицами будет происходить изменение внешней конфигурации любой части объёма, заполненного жидкостью или газом. Это изменение внешней конфигурации любой части объёма называется деформацией. Таким образом, жидкость и газ представляют собой сплошные деформируемые среды.

Различие жидкости и газа от твёрдого деформируемого тела находит своё отражение в механике деформируемых сред в том, что к ним применяются различные меры подвижности частиц. Для твёрдого деформируемого тела подвижность частиц мала и поэтому мерой подвижности их служат сами смещения частиц, сами деформации их. Для жидкости и газа подвижность частиц достаточно велика и поэтому мерой подвижности их служат уже не сами смещения, которые во многих случаях весьма велики и не характерны для движения, а скорости смещений частиц, не сами деформации, а их отношения к промежуткам времени их образования, т. е. скорости деформаций. Следовательно, жидкость и газ можно определять как сплошные деформируемые среды, мерами подвижности частиц которых служат скорости частиц и скорости деформаций частиц.

В качестве характеристики проявления материальности жидкости и газа вводится плотность р, представляющая собой предел отношения содержащейся в малом объёме массы к величине этого объёма, т. е.

Отличие жидкости от газа выражается в том, что плотность жидкости считается мало изменяемой, тогда как плотность газа в ряде случаев оказывается сильно изменяемой. Во всех других отношениях между жидкостью и газом имеется много общего. По этой причине далее слово «жидкость» будет употребляться в собирательном смысле» Под этим словом будет подразумеваться как «капельная» жидкость ), так и некоторый газ, плотность которого может изменяться в широких пределах.

Гипотеза о сплошности среды означает не только сплошное заполнение частицами жидкости какого-либо объёма. Она означает также и непрерывность продвижения частиц в том смысле, что каждая

частица не может отделяться от окружающих её частиц, не может отставать от впереди расположенной частицы и не может ее перегонять.

Гипотеза о сплошности среды означает также и непрерывность деформирования любой части объёма. Вследствие этого замкнутая линия, состоящая из одних и тех же частиц, во всё время движения останется замкнутой; замкнутая поверхность, состоящая из одних и тех же частиц, будет непрерывно деформироваться, но оставаться всё время замкнутой.

Но гипотеза сплошности среды не влечет за собой в качестве неизбежного следствия гипотезу о непрерывности распределения скоростей и плотностей частиц. В данный момент времени две соседние частицы могут иметь различные скорости и различные плотности, но в любой следующий момент времени между величинами скоростей и плотностей этих частиц должна существовать определённая зависимость для предотвращения разрыва сплошности среды.

Таким образом, требование непрерывности распределения скоростей и плотностей должно составлять дополнительную гипотезу. Принятие этой гипотезы необходимо для того, чтобы пользоваться математическим аппаратом частных производных.

На основании изложенного мы приходим к тому выводу, что классическая гидродинамика основывается 1) на гипотезе сплошности среды и непрерывности её деформирования, 2) на гипотезе непрерывности распределения скоростей и плотностей частиц.

Разрыв непрерывности скоростей и плотностей может допускаться только для отдельных конечных поверхностей.

1. Гипотеза сплошности среды.

В гидромеханике рассматриваются макроскопические движения жидкостей и газов, а также силовое взаимодействие этих сред с твердыми телами. При этом, как правило, размеры рассматриваемых объемов жидкостей, газов и твердых тел оказываются несопоставимо большими по сравнению с размерами молекул и межмолекулярными расстояниями. Это естественно, поскольку межмолекулярные расстояния в жидкостях составляют всего см.

Указанные обстоятельства позволяют ввести гипотезу сплошности изучаемой среды и заменить реальные дискретные объекты упрощенными моделями, представляющими собой материальный континуум, т. е. материальную среду, масса которой непрерывно распределена по объему. Такая идеализация упрощает реальную дискретную систему и позволяет использовать для ее описания хорошо разработанный математический аппарат исчисления бесконечно малых и теорию непрерывных функций.

Параметры, характеризующие термодинамическое состояние, покой или. движение среды, считаются при этом непрерывно изменяющимися по всему объему, занятому средой, кроме, быть может, отдельных точек, линий или поверхностей, где могут существовать разрывы.

Теоретические результаты, подученные для гипотетической сплошной среды, тем лучше совпадут с результатами наблюдений, чем полнее и точнее учтены в ней свойства реальных жидкостей и газов. К сожалению, идеализацию среды во многих случаях не удается ограничить только допущением ее сплошности. Сложность изучаемых явлений заставляет отказываться от учета и некоторых других свойств реальных сред. В зависимости от тех свойств, которые приписываются гипотетической сплошной среде, получают различные ее модели.

Гипотеза сплошности среды означает, что всякий малый элемент объема жидкости считается все-таки настолько большим, что содержит еще очень большое число молекул. Соответственно этому, когда мы будем говорить о бесконечно малых элементах объема, то всегда при этом будем подразумевать «физически» бесконечно малый объем, т. е. объем достаточно малый по сравнению с объемом жидкости, но большой по сравнению с молекулярными расстояниями.

Согласно гипотезе сплошности масса среды распределена в объеме непрерывно и в общем неравномерно. Основной динамической характеристикой среды является плотность распределения массы по объему или просто плотность среды.

Плотность среды в произвольной точке А определяется соотношением

где – масса, заключенная в малом объеме , включающем точку А ; предел берется при стягивании объема к этой точке.

Наряду с плотностью в рассмотрение вводится понятие удельного объема , который представляет собой объем, содержащий единицу массы:

Плотность среды может изменятся от точки к точке и в данной точке со временем, т. е.

(11)

Аналогично для давления имеем . Как известно, по двум термодинамическим величинам с помощью уравнения состояния вещества могут быть определены все термодинамические величины. Таким образом, задание пяти величин: трех компонентов скорости , давления и плотности полностью определяет состояние движущейся жидкости. Подчеркнем, что есть скорость жидкости в каждой данной точке х, у, z пространства в момент времени t .

Однако эта функциональная связь не является непосредственной, так как плотность жидкостей и газов определяется фактически значениями термодинамических параметров состояния и Т), которые при движении среды зависят от координат (х, у, z) и времени (t ).

Математическое описание движения жидкой среды общими дифференциальными уравнениями, учитывающими все физические свойства, присущие этой среде, оказывается весьма сложной задачей. Если даже ограничится учетом только текучести, вязкости и сжимаемости, то и тогда уравнения движения, выражающие основные законы механики, оказываются настолько сложными, что пока не удалось разработать общих аналитических методов их решения. Применение численных методов интегрирования таких уравнений на базе современных ЭВМ также связано со значительными трудностями. В гидромеханике поэтому широко используют различные упрощенные модели среды и отдельных явлений.

Под моделью реальной среды понимают такую гипотетическую среду, в которой учтены только некоторые из физических свойств, существенные для определенного круга явлений и технических задач. Другие малосущественные свойства среды в модели игнорируются.

Одной из основных в гидромеханике является модель несжимаемой идеальной (или невязкой) жидкости. Так называется гипотетическая сплошная среда, обладающая текучестью, лишенная вязкости и полностью несжимаемая. Эта модель является объектом исследования в разделе гидромеханики «Теория идеальной несжимаемой жидкости». Игнорирование свойств вязкости и сжимаемости сильно упрощает математическое описание движения жидкости и позволяет получить многие решения в конечном замкнутом виде. Несмотря на значительную степень идеализации среды, теория несжимаемой невязкой жидкости дает ряд не только качественно, но и количественно подтверждаемых опытом результатов, полезных для практических приложений. Но не менее существенное значение этой теории состоит в том, что она является базой для других моделей, более полно учитывающих свойства реальных сред. Следует, однако, подчеркнуть, что пренебрежение вязкостью является весьма сильной степенью идеализации, поэтому теория идеальной несжимаемой жидкости может приводит к результатам, резко расходящимся с опытом.

Более полно свойства реальной жидкости учитываются в модели вязкой несжимаемой жидкости, которая представляет собой среду, обладающую текучестью и вязкостью, но абсолютно несжимаемую. Теория вязкой несжимаемой жидкости лишь в ограниченном числе случаев с простейшими граничными условиями позволяет получить точные решения полных уравнений движения. Наибольшее значение в этой теории имеют приближенные уравнения и их решения. Такие уравнения получают путем отбрасывания в полных уравнениях движения тех членов, которые мало влияют на соответствие теоретических решений опыту. Решения приближенных уравнений могут быть как точными, так и приближенными.

Как известно, капельные жидкости являются малосжимаемыми средами, поэтому для широкого круга теоретических и прикладных задач пренебрежение сжимаемостью является вполне допустимой идеализацией и мало влияет на вид получаемых решений и степень совпадения теоретических результатов с данными измерений. Но все же существуют случаи движения жидкостей, которые нельзя достаточно достоверно описать, если не учесть сжимаемость.

Для того чтобы стало возможным теоретическое исследование направленного движения жидкости с использованием математического аппарата исчисления бесконечно малых (дифференциального исчисления) и теории непрерывных функций (интегрального исчисления), необходимо выполнить определенную идеализацию жидкости и абстрагироваться от её дискретного молекулярного строения.

Все тела (в том числе и газообразные и капельной жидкости) состоят из отдельных элементарных частиц. Причём объёмы, занимаемые телами, значительно больше объёмов, в которых сосредоточено само вещество. По существу, все тела «состоят из пустоты», но в то же время в любом существенном для практических задач малом объёме пространства, занятого телом, заключено достаточно большое число частиц. Как правило, размеры рассматриваемых объёмов жидкости и твердых тел, обтекаемых этой жидкостью, оказываются несопоставимо бόльшими по сравнению с размерами молекул и межмолекулярными расстояниями. Указанные обстоятельства дают основание приближенно рассматривать жидкость как материальную среду, заполняющую пространство непрерывно сплошным образом , и ввести гипотезу сплошной среды , на основании которой реальные дискретные объекты заменяются упрощенными моделями материального континуума . Эти умозрительные выводы сформулированы в постулате Даламбера – Эйлера , утверждающем, что при изучении направленного движения жидкостей и сил взаимодействия их с твердыми телами, жидкости можно рассматривать как сплошную среду - континуум, лишенную молекул и межмолекулярных пространств .

Принимая гипотезу сплошности мы тем самым предполагаем макроскопическое поведение жидкостей одинаковым, как если бы их структура была идеально непрерывной, а физические величины, например масса и количество движения, связанные с тем веществом, которое содержится внутри рассматриваемого объёма, считаем равномерно распределённым по этому объёму, отвлекаясь от того, что в действительности они концентрируются в его малых частях.

Гипотеза сплошной среды (или гипотеза сплошности) – первый шаг на пути формирования моделей жидкости, рассматриваемых в различных разделах механики жидкости и газа и, в том числе, в газовой динамике. Такая идеализация существенно упрощает реальную дискретную среду и позволяет, в частности, при исследовании движения жидкости использовать хорошо разработанный математический аппарат исчисления бесконечно малых (дифференциального и интегрального исчислений) и теорию непрерывных функций.

Гипотеза сплошной среды даёт возможность придать определенный смысл понятию «значение в точке» , применяемому к различным параметрам жидкости, например плотности, скорости, температуре, и вообще считать эти величины непрерывными функциями координат и времени. На этом основании можно составить уравнения, описывающие движение жидкости (уравнения движения), форма которых не зависит от микроскопической структуры частиц этой жидкости. В этом смысле движения жидкостей и газов изучаются одинаково – уравнения не зависят от того, существует ли какая-либо структура частиц . Аналогичная гипотеза вводится в механике деформируемых твердых тел, и потому эти два предмета вместе часто называют механикой сплошных сред .


Несмотря на естественность гипотезы сплошной среды, определение свойств этой гипотетически непрерывной среды , которая движется таким же образом, как и реальная жидкость с данной структурой частиц, оказывается трудным делом. Используя методы кинетической теории газов, с помощью упрощающих предположений о столкновении молекул можно показать, что уравнения, определяющие локальную скорость газа, имеют такой же вид, как и в случае движения некоторой непрерывной жидкости (хотя значения коэффициентов молекулярного переноса определяются не строго). Математическое обоснование рассмотрения движения газов как движения сплошной среды обычно выходит за рамки традиционных курсов механики жидкости и газа и, тем более, прикладной гидро- или газодинамики. Более того, это обоснование неполно для капельных жидкостей и поэтому принято ограничиваться введением такой гипотезы.

Критерием приемлемости всякой физической гипотезы является степень совпадения результатов, полученных на её основе, с результатами наблюдений и измерений. Для капельных жидкостей и газов правомерность использования гипотезы сплошной среды в широком диапазоне изменения параметров полностью подтверждается. Обширные экспериментальные данные свидетельствуют о том, что обычные реальные жидкости в нормальных условиях, а зачастую и при значительных отклонениях от них, движутся так, как если бы они были непрерывны.

Количественные пределы применимости законов газовой динамики, основанной на модели сплошной среды, определяются величиной критерия Кнудсена .

«В гидродинамике и в задачах обычной газодинамики жидкость представляют как сплошную среду. Это тоже своеобразная модель жидкости. Это представление допускает, что объем жидкости можно дробить на какие угодно мелкие части, вплоть до бесконечно малых, но ее свойства при этом остаются теми же самыми. Иначе говоря, здесь не принимается во внимание молекулярная структура вещества. Представление о жидкости, как о сплошной среде, было вызвано необходимостью использовать для расчетов методы математического анализа, в которых приходится оперировать бесконечно малыми массами и объемами. Модель сплошной среды применима для несжимаемых жидкостей, а также для газов не очень низких плотностей. Если же плотность газа становится очень низкой, как, например, на больших высотах, то расстояние между молекулами (длина свободного пробега) становятся соизмеримыми с размерами обтекаемых тел, и модель сплошной среды уже никак не соответствует реальной картине обтекания».

& (Виноградов) с.11